Schede di Analisi Matematica 1

Fulvio Di Sciullo | Politecnico di Torino

7 Esercitazione

Quiz 7.1 (RR). Sia \(f : \mathbb{R} \to \mathbb{R} \) continua con \(f(10) = 2 \), allora necessariamente:

A) esiste \(\bar{x} \in \mathbb{R} \) tale che \(f(\bar{x}) > 2 \)
B) esiste \(\bar{x} > 10 \) tale che \(f(\bar{x}) < 0 \)
C) esiste \(\bar{x} < 10 \) tale che \(f(\bar{x}) > 0 \)
D) per ogni \(x \in \mathbb{R} \) si ha che \(f(x) < 2 \)

Limiti di funzioni

Esercitazione 7.2. Calcolare i seguenti limiti

\[
\begin{align*}
\text{(a)} \quad & \lim_{x \to 2} x^3 - 1 \\
\text{(b)} \quad & \lim_{x \to \pi/2} \sin(x) \cdot \cos(x) \\
\text{(c)} \quad & \lim_{x \to 1} \frac{x^3 - 1}{x^4 - 1} \\
\text{(d)} \quad & \lim_{x \to 3} \frac{x^2 - 8x + 15}{x^2 - 10x + 21} \\
\text{(e)} \quad & \lim_{x \to 5} \frac{(x - 5)^2}{x^2 - 6x + 5} \\
\text{(f)} \quad & \lim_{x \to 4} \frac{\sqrt{x} - 2}{x^2 - 5x + 4} \\
\text{(g)} \quad & \lim_{x \to 0^+} \arctan \frac{1}{x} \\
\text{(h)} \quad & \lim_{x \to 1^-} \left(\frac{1}{x - 1} + \frac{x}{1 - x^2} \right)
\end{align*}
\]

Esercitazione 7.3. Si calcoli, al variare di \(p, q \in \mathbb{N} \):

\[
\lim_{x \to 1} \frac{x^p - 1}{x^q - 1}
\]

Esercitazione 7.4. Calcolare i seguenti limiti

\[
\begin{align*}
\text{(a)} \quad & \lim_{x \to +\infty} \frac{\sqrt{x + 1} - \sqrt{x}}{x} \\
\text{(b)} \quad & \lim_{x \to +\infty} \sqrt{1 + 4x^2 - 2x} \\
\text{(c)} \quad & \lim_{x \to +\infty} \sqrt{x^2 \left(\sqrt{1 + x} - \sqrt{x - 1} \right)} \\
\text{(d)} \quad & \lim_{x \to +1^+} \frac{\sqrt{2 - x^2} - 1}{(x - 1)^2}
\end{align*}
\]
Esercitazione 7.5. Determinare \(\lambda \in \mathbb{R} \) in modo tale che
\[
\lim_{x \to +\infty} \sqrt{x^2 - 1} \left(\sqrt{x^2 + \lambda} - x \right) = 2
\]
Esercizio 7.10. Calcolare, se esistono, i limiti delle seguenti successioni

(a) \[\lim_{n \to \infty} \frac{2n^2 + 1}{n - 1} \]

(b) \[\lim_{n \to \infty} \frac{n - 6n^4}{1 + n^2 + n^4} \]

(c) \[\lim_{n \to \infty} n^2 \left(\sin \left(\frac{\pi}{2} n \right) \right)^2 \]

(d) \[\lim_{n \to \infty} (-1)^n (0, 1)^n \]

(e) \[\lim_{n \to \infty} (-1)^n \left(\frac{3}{2} \right)^n \]

(f) \[\lim_{n \to \infty} \sqrt{n} - \sqrt{n - 1} \]

(g) \[\lim_{n \to \infty} \sqrt{n} \left(\sqrt{n} - \sqrt{n - 1} \right) \]

(h) \[\lim_{n \to \infty} \frac{(-1)^n + 2}{(-1)^n + 1 - 2} \]

(i) \[\lim_{n \to \infty} \frac{(3n)!}{(n!)^3} \]

(j) \[\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+100} \]

(k) \[\lim_{n \to \infty} \frac{n^n}{n!} \]

Esercizio 7.11. Sia \((a_n)_{n \in \mathbb{N}}\) una successione tale che \(a_n \geq 0\) per ogni \(n \in \mathbb{N}\) e \(\lim_{n \to \infty} a_n = \ell\). Si dimostri che \(\lim_{n \to \infty} \sqrt{a_n} = \sqrt{\ell}\).

Esercizio 7.12. Stabilire se è vera o falsa la seguente proposizione:

Sia \((a_n)_{n \in \mathbb{N}}\) una successione tale che \(\lim_{n \to \infty} a_n^2 = 1\).

Allora necessariamente \(\lim_{n \to \infty} \sqrt{a_n} = 1\)

Alcuni degli esercizi proposti sono tratti dai testi consigliati:

(Q) G. G. Quelali, _Il bernoccolo del calcolo I_, CLUT Editrice, Torino 2014.

(MS) P. Marcellini, C. Sbordone, _Esercizi di matematica_, Liguori Editore.